MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.

نویسندگان

  • F K Yousafzai
  • R R Eady
چکیده

When the MoFe (Kp1) and Fe (Kp2) component proteins of Klebsiella pneumoniae nitrogenase are incubated with MgADP and AlF4(-) in the presence of dithionite as a reducing agent, a stable putative transition-state complex is produced [Yousafzai and Eady (1997) Biochem. J. 326, 637-640]. Surprisingly, the EPR signal associated with reduced Kp2 is not detectable, but Kp1 retains the S=3/2 EPR signal arising from the dithionite reduced state of the MoFe cofactor centre of the protein. This is consistent with the [Fe4S4] centre of the Fe protein in the complex being oxidized, and similar observations have been made with the complex of Azotobacter vinelandii [Spee, Arendsen, Wassink, Marritt, Hagen and Haaker (1998) FEBS Lett. 432, 55-58]. No satisfactory explanation for the fate of the electrons lost by Kp2 has been forthcoming. However, we report here that during the preparation of the MgADP-AlF4 K. pneumoniae complex under argon, H2 was evolved in amounts corresponding to one half of the FeMoco content of the Kp1 (FeMoco is the likely catalytic site of nitrogenase with a composition Mo:Fe7:S9:homocitrate). This is surprising, since activity is observed during incubation in the absence of MgATP, normally regarded as being essential for nitrogenase function, and in the presence of MgADP, a strong competitive inhibitor of nitrogenase. The formation of H2 by nitrogenase in the absence of AlF4(-) was also observed in reaction mixtures containing MgADP but not MgATP. The reaction showed saturation kinetics when Kp1 was titrated with increasing amounts of Kp2 and, at saturation, the amount of H2 formed was stoichiometric with the FeMoco content of Kp1. The dependence of the rate of formation of H2 on [MgADP] was inconsistent with the activity arising from MgATP contamination. We conclude that MgATP is not obligatory for H+ reduction by nitrogenase since MgADP supports a very low rate of hydrogen evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nitrogenase from the facultative anaerobe

The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evolution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor ofMgATP in the MgATPinduced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K' = 20,UM was determined for MgADP. The release o...

متن کامل

Nitrogenase of Klebsiella pneumoniae. Reversibility of the reductant-independent MgATP-cleavage reaction is shown by MgADP-catalysed phosphate/water oxygen exchange.

The steady-state kinetics of reductant-independent ATP hydrolysis by Klebsiella pneumoniae nitrogenase at 23 degrees C at pH 7.4 were determined as a function of component protein ratio (optimal at an oxidized Fe protein/MoFe protein ratio of 3:1) and MgATP concentration (Km 400 microM). Competitive inhibition was observed for MgADP (Ki 145 microM), [beta gamma-methylene]ATP (Mgp[CH2]ppA) (Ki 1...

متن کامل

Printed in Great Britain

Stopped-flow spectrophotometry and e.p.r. spectroscopy were used to study the kinetics of reduction by dithionite of the oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2.0 ) in the presence of MgADP at 230C at pH7.4. The active reductant, SO2-, produced by the predissociation of S2042= 2SO2-, reacts with Kp20. (MgADP),, with k 3.0 x 106 + 0.4 x 106 M-l' s-1. The inhibition of ...

متن کامل

Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.

Nitrogenase-catalyzed substrate reduction reactions require electron transfer between two component proteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein, in a reaction that is coupled to the hydrolysis of MgATP. In the present work, electron transfer (Marcus) theory has been applied to nitrogenase electron transfer reactions to gain insights into possible roles for MgATP in th...

متن کامل

Energy transduction by nitrogenase: binding of MgADP to the MoFe protein is dependent on the oxidation state of the iron-sulphur 'P' clusters.

Hydrolysis of MgATP to MgADP is essential for nitrogenase action. There is good evidence for binding of both nucleotides to the Fe protein of nitrogenase, but data indicating their binding to the MoFe protein have been controversial [see Miller and Eady (1989) Biochem. J. 263, 725-729]. The binding of MgADP to the MoFe protein of nitrogenase of Klebsiella pneumoniae was investigated by non-equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 339 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1999